Legi de compozitie

Fie o mulțime M şi $*: M \mathrm{x} M \rightarrow M$ o operație - spunem că * este o lege de compoziție internă pe M dacă:

$$
\forall x, y \in M \Rightarrow x^{*} y \in M
$$

Asociativitate unei legi de compozitie

Legea * este asociativă dacă: $\left(x^{*} y\right)^{*} z=x^{*}\left(y^{*} z\right)$
$\forall x, y, z \in M$

Elementul neutru al unei legi de compozitie

Legea * admite elementul neutru e dacă:

$$
\forall x \in M \quad x^{*} e=e^{*} x=x
$$

Se rezolvă ecuația $x * e=x$ în necunoscuta e. (rezultatul trebuie să fie un număr.)

Grup

O pereche, ($G,{ }^{*}$) determină o structură_de grup dacă:

1. * este lege de compoziție internă pe \mathbf{G}
2. * este asociativă
3. * admite element neutru, notat e
4. Orice element admite simetric în raport cu *

Dacă în plus:
5. *este comutativă,atunci grupul este comutativ(abelian)

Parte stabilă

Fie $H \subset M$ o submulțime şi * o lege pe M

- spunem cǎ H este parte stabilă a lui M în raport cu * dacǎ:

$$
\forall x, y \in H \Rightarrow x^{*} y \in H
$$

Comutativitatea unei legi de compozitie

Legea * este comutativă dacǎ: $x^{*} y=y^{*} x$
$\forall x, y \in M$

Simetricul unui element în raport cu legea *

Elementul x^{\prime} este simetricul elementului x dacă:

$$
x^{*} x^{\prime}=x^{\prime *} x=e
$$

Se rezolvă ecuația $x * x=e$ în necunoscuta x^{\prime}. (Dacă are sens, rezultatul este 0 expresie în x)

Morfism de grupuri

Fie grupurile $\left(\mathbf{G}_{1},{ }^{*}, \mathbf{e}_{\mathbf{1}}\right)$ şi $\left(\mathbf{G}_{2},{ }^{0}, \mathbf{e}_{2}\right)$ și funcția $f: G_{1} \rightarrow G_{2}$ Spunem că f este un morfism între \mathbf{G}_{1} și $\mathbf{G}_{\mathbf{2}}$ dacă:

$$
f\left(x^{*} y\right)=f(x) \circ f(y) \quad \forall x, y \in G_{1}
$$

Dacă feste morfïsm bijectiv atunci f se numeşte izomorfism.

